Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24381, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312539

RESUMO

This study examines soil properties in 30- and 60-year-old agricultural biocorridors and provides a comparative overview with neighbouring farmland. Both mixed and undisturbed soil samples were collected from six farmland/biocorridor study areas to assess a wide spectrum of physical, hydrophysical, chemical and biological soil properties. Biocorridor soils were characterised by higher water retention capacities, porosity, aeration and soil carbon stock, the latter increasing with depth. On the other hand, biocorridor bulk density under forest vegetation cover was lower, indicating progressive soil restoration. Slightly lower soil reactions in biocorridor soils disproved the hypothesis that nutrient-rich soils under biocorridors would form substrates with a high base cation content, leading to soil acidification. Biological activity, expressed through respiration coefficients, was generally low due to unfavourable physical conditions (clayey or silty-clay substrates), with the lowest levels in biocorridors. Nevertheless, biocorridor soil microbiota displayed more effective utilisation of organic matter as a carbon and nitrogen source, with lighter-textured soils tending to show more effective organic matter utilisation after excluding the influence of land use. Our results confirm biocorridors as an important landscape component, contributing to both soil stability and local revitalisation of soil environments and further emphasising their potential as climate-change mitigation tools in their role as carbon sinks.

2.
Tree Physiol ; 42(12): 2534-2545, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866300

RESUMO

Several studies have shown that petiole xylem structure could be an important predictor of leaf gas exchange capacity, but the question of how petiole xylem structure relates to leaf gas exchange under different environment conditions remains unresolved. Moreover, knowledge of the amount of leaf gas exchange and structural variation that exists within a single species is also limited. In this study, we investigated the intraspecies coordination of leaf gas exchange and petiole xylem traits in 2-year-old seedlings of Ulmus laevis Pall. under well-watered and drought conditions. It was found that all studied petiole xylem traits of the elm seedlings were positively correlated with each other. This shows that the development of petiole xylem structure is internally well-coordinated. Nevertheless, the lower correlation coefficients between some petiole xylem traits indicate that the coordination is also individually driven. Drought stress reduced all studied leaf gas exchange traits and significantly increased intraspecies variation. In addition, drought stress also shifted the relationships between physiological traits and exhibited more structure-function relationships. This indicates the importance of petiole xylem structure in dictating water loss during drought stress and could partly explain the inconsistencies between leaf structure-function relationships studied under optimal conditions. Although several structure-function traits were related, the wide ranges of correlation coefficients indicate that the internal coordination of these traits substantially differs between individual elm seedlings. These findings are very important in the context of expected climatic change, as some degree of intraspecies variation in structure-function relationships could ensure the survival of some individuals under different environmental conditions.


Assuntos
Ulmus , Água , Água/fisiologia , Plântula , Ulmus/fisiologia , Xilema/fisiologia , Secas , Folhas de Planta/fisiologia
3.
Tree Physiol ; 41(10): 1848-1860, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33822237

RESUMO

Spring drought episodes are becoming more frequent and intensive in European temperate forests. To study tree resilience to spring drought, Norway spruce seedlings were exposed to three levels of drought stress (well-watered (W), moderately stressed (M) and severely stressed (S)) for 42 days and then fully irrigated for 14 days. Drought strongly reduced gas exchange parameters for both M and S seedlings. After 42 days, stomatal conductance was lower by 83 and 97% in M and S, respectively, than in W seedlings. Respiration prevailed over photosynthesis in S seedlings at the end of the drought period. Drought mostly reduced longitudinal growth, especially in shoots and needles. Xylem growth reduction was caused mainly by a lower number of newly produced tracheids, not by changes in their size. Norway spruce seedlings showed good resilience to spring drought, as the observed physiological parameters started to recover after rewatering and seedlings started to sprout and form new tracheids. In M seedlings, all physiological traits recovered to the level of W seedlings during the 14-day irrigation period but the recovery took longer in S seedlings. Shoots and needles did not regrow in length but leaf mass per area increased during the recovery phase. To conclude, Norway spruce seedlings showed good resilience to spring single-drought event, but time necessary to full recovery from stress could make seedlings more vulnerable to recurrent drought events.


Assuntos
Secas , Picea , Fotossíntese , Plântula , Água , Xilema
4.
Tree Physiol ; 40(9): 1147-1164, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32470134

RESUMO

Spring drought is becoming a frequently occurring stress factor in temperate forests. However, the understanding of tree resistance and resilience to the spring drought remains insufficient. In this study, European beech (Fagus sylvatica L.) seedlings at the early stage of leaf development were moderately and severely drought stressed for 1 month and then subjected to a 2-week recovery period after rewatering. The study aimed to disentangle the complex relationships between leaf gas exchange, vascular anatomy, tree morphology and patterns of biomass allocation. Stomatal conductance decreased by 80 and 85% upon moderate and severe drought stress, respectively, which brought about a decline in net photosynthesis. However, drought did not affect the indices of slow chlorophyll fluorescence, indicating no permanent damage to the light part of the photosynthetic apparatus. Stem hydraulic conductivity decreased by more than 92% at both drought levels. Consequently, the cambial activity of stressed seedlings declined, which led to lower stem biomass, reduced tree ring width and a lower number of vessels in the current tree ring, these latter also with smaller dimensions. In contrast, the petiole structure was not affected, but at the cost of reduced leaf biomass. Root biomass was reduced only by severe drought. After rewatering, the recovery of gas exchange and regrowth of the current tree ring were observed, all delayed by several days and by lower magnitudes in severely stressed seedlings. The reduced stem hydraulic conductivity inhibited the recovery of gas exchange, but xylem function started to recover by regrowth and refilling of embolized vessels. Despite the damage to conductive xylem, no mortality occurred. These results suggest the low resistance but high resilience of European beech to spring drought. Nevertheless, beech resilience could be weakened if the period between drought events is short, as the recovery of severely stressed seedlings took longer than 14 days.


Assuntos
Secas , Fagus , Fotossíntese , Folhas de Planta , Plântula , Água
5.
Saudi J Biol Sci ; 24(7): 1445-1452, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30294211

RESUMO

Dracaena cinnabari Balf. fil. is an endangered endemic species growing on the Yemeni island of Soqotra. Dracaena woodlands are considered as one of the oldest forest communities on Earth. Uncontrolled grazing unfortunately caused a lack of naturally occurring regeneration. Our two-year research was focused on the growth dynamics of Dracaena seedlings from two separate populations. One hundred of germinated seeds from two different altitudes from the island were sown and planted under the same conditions. Average increment and difference between the growth dynamics of plants from the two localities were investigated. The observed data on this plant species revealed very interesting, hitherto unknown results. (1) The seedlings germinated within a time period from four to ten weeks. Germination rate was 90% on the Firmihin highland plateau and 78% on the Scand Mountain. (2) Average plant length from both localities was almost the same (24.9 cm) at the end of measurement. Differences in values between the two populations proved as non-significant. (3) A significant difference was found in the number of leaves and in the sum of lengths of all leaves on one plant. While the seedlings from Firmihin featured a wide spreading above-ground part with a large number of leaves, the plants from Scand invested more energy into faster leaves elongation rate. (4) Growth dynamics reflected seasonal changes. Increments were slower or ceased during the period of vegetative rest from autumn to spring. (5) Average mortality rate was 13%. Most of the plants died during the period of vegetative rest. Further study on germination and regeneration under artificial conditions seems like the only way to prevent species extinction.

6.
Mol Ecol Resour ; 16(4): 933-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26849414

RESUMO

Here, we present an improved amplified fragment length polymorphism (AFLP) protocol using restriction enzymes (AscI and SbfI) that recognize 8-base pair sequences to provide alternative optimization suitable for species with a genome size over 70 Gb. This cost-effective optimization massively reduces the number of amplified fragments using only +3 selective bases per primer during selective amplification. We demonstrate the effects of the number of fragments and genome size on the appearance of nonidentical comigrating fragments (size homoplasy), which has a negative impact on the informative value of AFLP genotypes. We also present various reaction conditions and their effects on reproducibility and the band intensity of the extremely large genome of Viscum album. The reproducibility of this octo-cutter protocol was calculated using several species with genome sizes ranging from 1 Gb (Carex panicea) to 76 Gb (V. album). The improved protocol also succeeded in detecting high intraspecific variability in species with large genomes (V. album, Galanthus nivalis and Pinus pumila).


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , DNA de Plantas/genética , Genoma de Planta , Técnicas de Genotipagem/métodos , Plantas/classificação , Plantas/genética , Enzimas de Restrição do DNA/metabolismo , DNA de Plantas/metabolismo , Reprodutibilidade dos Testes
7.
Ecol Evol ; 5(21): 4989-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640676

RESUMO

Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees' photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20-year-old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross-sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross-sectional needle area. In sun needles, drought reduced all trait values by 10-40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought-stressed trees, the difference between the two needle types was reduced by 25% in the drought-stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change.

8.
PLoS One ; 10(5): e0127055, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992920

RESUMO

Host size and distance from an infected plant have been previously found to affect mistletoe occurrence in woody vegetation but the effect of host plant competition on mistletoe infection has not been empirically tested. For an individual tree, increasing competition from neighbouring trees decreases its resource availability, and resource availability is also known to affect the establishment of mistletoes on host trees. Therefore, competition is likely to affect mistletoe infection but evidence for such a mechanism is lacking. Based on this, we hypothesised that the probability of occurrence as well as the abundance of mistletoes on a tree would increase not only with increasing host size and decreasing distance from an infected tree but also with decreasing competition by neighbouring trees. Our hypothesis was tested using generalized linear models (GLMs) with data on Loranthus europaeus Jacq., one of the two most common mistletoes in Europe, on 1015 potential host stems collected in a large fully mapped plot in the Czech Republic. Because many trees were multi-stemmed, we ran the analyses for both individual stems and whole trees. We found that the probability of mistletoe occurrence on individual stems was affected mostly by stem size, whereas competition had the most important effects on the probability of mistletoe occurrence on whole trees as well as on mistletoe abundance. Therefore, we confirmed our hypothesis that competition among trees has a negative effect on mistletoe occurrence.


Assuntos
Ecossistema , Florestas , Erva-de-Passarinho , Quercus , República Tcheca
9.
For Ecol Manage ; 292: 39-48, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30220778

RESUMO

Silver fir (Abies alba Mill.) is a tree species distributed mainly in central Europe. It once was a dominant tree species within some forests of this region. The causes for its rapid decline in the past two centuries have not yet been sufficiently explained. It is argued that human activities have been largely responsible for expansions and contractions of silver fir populations. On the basis of the current distribution of silver fir, historical maps and palaeoecological data, we describe the expansion of silver fir forests. We use fine resolution at the landscape level, an approach that has so far been neglected. Our study areas lies in the northern part of the White Carpathian Mountains, Czech Republic. The area comprises 7,045 ha, 65% of which is covered by forests. This landscape was shaped by early modern colonization from the 16th century onwards and has changed greatly since the decline of its traditional utilisation in the 19th and 20th centuries. The area of forests almost doubled from 1838 to 2005 while the area of pastures and arable land decreased. We identified 172 hectares of silver fir forests by field mapping, which represent 2.5% of the whole study area and 3.8% of its forested part. We used land use history variables (based on subsequent land cover maps from 1838, 1882 and 1956) and terrain variables (derived from a digital elevation model) in a logistic regression to model the probability of silver fir forest occurrence. Land use history was highly significantly correlated with the occurrence of silver fir forests. Approximately 59% of silver fir forests occur on land used as pastures in 1838, 28% are on former arable land, meadows and fallows, while only 13% have been forested continuously since the 19th century. We know from historical sources that the surrounding forests (now mainly Norway spruce monocultures) were dominated by silver fir up to the 1860s. Silver fir can act as a pioneer species. It can invade former agricultural land, which probably ensures the survival and periodical expansion of silver fir-dominated forests. Although silver fir has been thought to decline under human pressure, we suggest that the opposite may occur at the landscape level.

10.
Tree Physiol ; 31(10): 1103-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21891783

RESUMO

Conifers and other trees are constantly adapting to changes in light conditions, water/nutrient supply and temperatures by physiological and morphological modifications of their foliage. However, the relationship between physiological processes and anatomical characteristics of foliage has been little explored in trees. In this study we evaluated needle structure and function in Norway spruce families exposed to different light conditions and transpiration regimes. We compared needle characteristics of sun-exposed and shaded current-year needles in a control plot and a thinned plot with 50% reduction in stand density. Whole-tree transpiration rates remained similar across plots, but increased transpiration of lower branches after thinning implies that sun-exposed needles in the thinned plot were subjected to higher water stress than sun-exposed needles in the control plot. In general, morphological and anatomical needle parameters increased with increasing tree height and light intensity. Needle width, needle cross-section area, needle stele area and needle flatness (the ratio of needle thickness to needle width) differed most between the upper and lower canopy. The parameters that were most sensitive to the altered needle water status of the upper canopy after thinning were needle thickness, needle flatness and percentage of stele area in needle area. These results show that studies comparing needle structure or function between tree species should consider not only tree height and light gradients, but also needle water status. Unaccounted for differences in needle water status may have contributed to the variable relationship between needle structure and irradiance that has been observed among conifers.


Assuntos
Aclimatação , Picea/fisiologia , Folhas de Planta/fisiologia , Luz Solar , Desidratação , Umidade , Nitrogênio/metabolismo , Picea/anatomia & histologia , Picea/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Transpiração Vegetal , Solo/análise , Água/análise , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...